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Abstract 

In recent years, the interests of disassembly line have increased owing to economic reasons and the increase 

of environmental awareness. Effective line can provide many advantages in terms of economic aspect and 

it facilitates competition the companies with others. This study contributes to the relevant literature by a 

branch, bound and remember algorithm for disassembly line balancing problem with AND/OR precedence. 

The proposed exact solution method employs the memory-based dominance rule to eliminate the 

reduplicated sub-problems by storing all the searched sub-problems and to utilise cyclic best-first search 

strategy to obtain high-quality complete solutions fast. In this paper, minimising the number of stations is 

taken as the performance measure. The proposed methodology is tested on a set of 260 instances and 

compared with the mathematical model using CPLEX solver and five well-known metaheuristics. 

Computational results show that the proposed method is capable of obtaining the optimal solutions for all 

the tested instances with less than 0.1 seconds on average. Additionally, comparative study demonstrates 

that the proposed method is the state-of-the-art algorithm and outperforms the CPLEX solver and 

metaheuristics in terms of both solution quality and search speed aspects. 
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A fast branch, bound and remember algorithm for disassembly line balancing problem 

Abstract: In recent years, the interests of disassembly line have increased owing to economic 

reasons and the increase of environmental awareness. Effective line can provide many 

advantages in terms of economic aspect and it facilitates competition the companies with 

others. This study contributes to the relevant literature by a branch, bound and remember 

algorithm for disassembly line balancing problem with AND/OR precedence. The proposed 

exact solution method employs the memory-based dominance rule to eliminate the 

reduplicated sub-problems by storing all the searched sub-problems and to utilize cyclic 

best-first search strategy to obtain high-quality complete solutions fast. In this paper, 

minimizing the number of stations is taken as the performance measure. The proposed 

methodology is tested on a set of 260 instances and compared with the mathematical model 

using CPLEX solver and five well-known metaheuristics. Computational results show that the 

proposed method is capable of obtaining the optimal solutions for all the tested instances with 

less than 0.1 seconds on average. Additionally, comparative study demonstrates that the 

proposed method is state of the art algorithm and outperforms the CPLEX solver and 

metaheuristics in terms of both solution quality and search speed aspects.

Keywords: Combinatorial optimization; Branch and bound remember; Disassembly; Line 

balancing; Exact solution algorithm.

 

1. Introduction

Minimizing the environmental impact of waste materials is one of the most significant issues 

in today’s economic and environmental conditions. Product recovery has been vital and 

popular in industry for social, environmental and economic benefits due to rigid 

environmental regulations (Güngör and Gupta, 1999; Mete et al., 2018). Product recovery 

aims at reducing the environmental pollution and minimizing the total waste by 

remanufacturing or recycling the valuable component of the product. During product 

recovery, the product disassembly is the first and essential step, where the valuable 

components are dismantled from the discarded products through a set of disassembly 
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operations.

The disassembly operations are generally performed on a line of disassembly that contains of 

serial stations. Disassembly lines are widely applied to disassemble the discarded products 

because of its high productivity and suitability for automation. While there are a number of 

sub-problems within the disassembly line, line balancing is at the forefront. In addition, the 

disassembly line balancing problem (DLBP) emerges and attract increasing attention to 

optimize the line efficiency or other optimization criteria (Güngör and Gupta, 2002). DLBP 

without loss of generality, can be described as portioning and assigning a set of disassembly 

tasks to stations with one or several optimization criteria, while satisfying the precedence 

constraint and cycle time constraint. Hence, the efficiently designed and balanced 

disassembly line has a remarkable industrial and environmental importance. 

As far as precedence relation is concerned, the precedence relation of the DLBP is much more 

complex than the assembly line balancing problem (ALBP). ALBP contains functional and 

physical precedence constraints while DLBP contains generally physical constraints. 

Assembly line process contains a functional finish product, so precedence relation can be 

improved according to functional and physical constraints in ALBP. However, just physical 

constraint is considered in precedence relations of DLBP (Mete et al. 2016a; Li and Boucher, 

2017). There is mainly AND precedence relationship in ALBP; the precedence relation of the 

DLBP includes AND precedence, OR precedence, complex AND/OR precedence 

relationships (Güngör and Gupta, 2002). There are also other studies on OR successor (Koc et 

al., 2009), where only one of the successors is selected. This study mainly focuses on the 

DLBP without OR successor following Güngör and Gupta (2002); the problems without OR 

successor have great applications in real industry and have attracted many attentions (Ding et 

al., 2010; Kalayci and Gupta, 2013b, 2013c; Ren et al., 2017; Ren et al., 2018a). 

DLBP was first introduced by Güngör and Gupta (1999), where a systematic 

approach-oriented heuristic method is presented. Since then, much attention has been paid to 

this active research area. There exist heuristic approaches and exact solution methods to solve 

the problem in the literature. Firstly, heuristic-based solution approach studies are examined, 

and then mathematical modeling solution approaches are analyzed in the paragraph. Gungor 

and Gupta (2001) employed the shortest-path formulation to tackle the DLBP in the presence 
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of task failures and Güngör and Gupta (2002) formulated the DLBPs in different situations 

and presented a heuristic method. McGovern and Gupta (2003) presented a greedy/2-opt 

hybrid algorithm to solve the multi-objective DLBP. Following this, Ren et al. (2018b) 

extended this method to multi-objective DLBP with weights-based multi-criteria decision. 

Besides, Mete et al.(2016a) developed another heuristic method named beam search in order 

to minimize the station number. Due to the NP-hard nature of DLBP proved by McGovern 

and Gupta (2007) metaheuristic methods become popular to obtain high-quality solutions in 

acceptable computational time. McGovern and Gupta (2007) developed a genetic algorithm 

for DLBP, and later Kalayci, Polat, and Gupta (2016) extended this method to 

sequence-dependent DLBP. Other applied algorithms included the ant colony optimization 

algorithms (Agrawal and Tiwari, 2008; Ding et al., 2010; Kalayci and  Gupta, 2013a), tabu 

search algorithm (Kalayci and Gupta, 2014), particle swarm optimization (Kalayci and Gupta, 

2013c; Xiao et al.,2017), gravitational search algorithm (Ren et al., 2017), artificial bee 

colony (Kalayci and Gupta, 2013b; Kalayci et al., 2015; Liu and Wang, 2017)artificial fish 

swarm algorithm (Zhang et al., 2017), discrete bees algorithm (Liu et al., 2018), variable 

neighborhood search algorithm (Ren et al., 2018a) and firefly algorithm (Zhu, Zhang and 

Wang, 2018). Apart from the aforementioned heuristics/metaheuristics, there are some other 

mathematical programming techniques attempting to solve DLBP optimally. Altekin, 

Kandiller, and Ozdemirel (2008) employed mixed integer programming (MIP) formulation 

for profit-oriented DLBP. Koc, Sabuncuoglu, and Erel (2009) proposed one MIP model for 

DLBP using an AND/OR graph. Other exact techniques were developed for 

task-failure-driven rebalancing of disassembly lines (Altekin and Akkan, 2012), resource 

constrained DLBP (Mete et al. 2016b), piecewise linear approximation (Altekin, 2017), linear 

physical programming (Ilgın et al., 2017). Recently, Li et al. (2019) proposed branch, bound 

and remember (BBR) algorithm for simple DLBP using an AND/OR graph. The main 

differences between the study of Li et al. (2019) and current paper is structure of relations 

which are AND/OR successors and AND/OR precedence. These relations transform the 

problem into different problem. Therefore, different lower bound, upper bound or algorithm 

structure can necessary to solve the problem effectively. A novel mathematical model for 

joint design assembly and disassembly line balancing problem was introduced by Mete et al. 
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(2018). Nevertheless, they might be impractical in solving large-size practical problems due 

to high computation time (Özceylan et al., 2018). A summary of the relevant DLB literature is 

given in Table 1, differentiated with respect to performance measures and solution 

approaches. 

Table 1: Summary of the literature on DLBP
Papers
(sorted by year)

Line 
Type

Structure of 
parameters

Disassembly 
Level

Product 
Type Solution Approaches

Gungor and Gupta 
(2001) Straight Deterministic Completely Single Heuristic
McGovern and Gupta 
(2007) Straight Deterministic Completely Single Genetic algorithm
Agrawal and Tiwari 
(2008) U-type Stochastic Completely Mixed Ant colony algorithm
Altekin, Kandiller, 
and Ozdemirel 
(2008) Straight Deterministic Partially Single

Mixed integer linear 
programming

Koc, Sabuncuoglu, 
and Erel (2009 Straight Deterministic Completely Single

Mixed integer linear 
programming

Ding et al. (2010) Straight Deterministic Completely Single Ant colony algorithm
Altekin and Akkan 
(2012) Straight Deterministic Partially Single

Mixed integer linear 
programming

Kalayci and Gupta 
(2013a) Straight Deterministic Completely Single Ant colony algorithm
Kalayci and Gupta 
(2013b) Straight Deterministic Completely Single Artificial bee colony
Kalayci and Gupta 
(2013c)  Straight Deterministic Completely Single Particle swarm optimization
Paksoy et al. (2013) Straight Fuzzy Completely Mixed 0-1 fuzzy goal programming
Aydemir-Karadag 
and Turkbey (2013) Parallel Stochastic Completely Single Genetic algorithm
Kalayci and Gupta 
(2014) Straight Deterministic Completely Single Tabu search algorithm
Avikal, Mishra, and 
Jain (2014) Straight Fuzzy Completely Single

Fuzzy AHP, Kano model 
M-TOPSIS, Heuristic

Bentaha, Battaïa, and 
Dolgui (2014) Straight Stochastic Completely Single

Monte Carlo sampling 
technique, L-shaped 
algorithm

Kalayci et al. (2015) Straight Fuzzy Completely Single
Hybrid discrete artificial bee 
colony algorithm

Hezer and Kara 
(2015) Parallel Deterministic Completely Single

Network-based shortest 
route model

Bentaha, Battaïa, and 
Dolgui (2015) Straight Stochastic Completely Single Exact solution
Kalayci, Polat and 
Gupta (2016) Straight Deterministic Completely Single Hybrid genetic algorithm
Mete et al. (2016a) Straight Deterministic Completely Single Beam search algorithm
Ilgın, Akçay and 
Araz (2017) Straight Deterministic Completely Mixed

Linear physical 
programming

Altekin, (2017) Straight Stochastic Partially Single

Ren et al. (2017) Straight Deterministic Partially Single
Gravitational search 
algorithm

Liu and Wang, 
(2017) Straight Deterministic Completely Single Artificial bee colony

Zhang et al. (2017) Straight Deterministic Completely Single

Artificial fish swarm 
algorithm, Fuzzy 
programming

Ren et al. (2018b) Straight Fuzzy Completely Single 2-opt algorithm

Mete et al. (2018)
Parallel Deterministic Completely Single

Mixed integer linear 
programming; ant colony 
optimisation

Zhu, Zhang and 
Wang (2018) Straight Deterministic Completely Single Pareto firefly algorithm

Li et al. (2019) Straight Deterministic Completely Single
Exact and heuristic 
algorithms

Mete et al. (2019) Straight Deterministic Completely Single Mixed integer programming
Proposed Study Straight Deterministic Completely Single BBR algorithm

Page 8 of 30

http://mc.manuscriptcentral.com/tprs  Email: TPRS-peerreview@journals.tandf.co.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

In the light of aforementioned literature and a recent review paper by Özceylan et al. (2018), 

it is observed that the current exact MIP methods might suffer from tremendous computation 

time in solving large-size practical problems. Thus, this research makes the first attempt to 

solve the DLBP with branch, bound and remember (BBR) algorithm, which is capable of 

tackling both small-size and large-size instances optimally. BBR is selected as it has achieved 

the state-of-the-art results for ALBP (Li, Kucukkoc, and Zhang, 2018; Morrison, Sewell, and 

Jacobson, 2014; Sewell and Jacobson, 2012), and it is capable of solving the ALBPs with up 

to 1,000 tasks. The proposed BBR utilizes the memory-based dominance rule to eliminate the 

reduplicated sub-problems and develops the cyclic best-first search strategy with proper 

station load selection criterion to obtain high-quality complete solutions fast. A 

comprehensive study on a set of 260 instances is carried out to test the performance of the 

proposed BBR, and results of the BBR method are also compared with that by CPLEX solver 

and five well-known metaheuristics. Computational results demonstrate the superiority of the 

BBR method in both solution quality and search speed. Moreover, the BBR method obtains 

optimal solutions for all the tested instances within 0.1 second on average.

The rest of the paper is organized as follows. Section 2 describes the solved problem and 

presents the detailed mathematical model. The proposed BBR methodology is explained in 

detail in Section 3. Section 4 presents the computational study to test the performance of the 

proposed method. Conclusions, directions for future research and managerial impacts are 

argued in the last section.

2. Problem formulation

This part firstly introduces the main features of the considered DLBP with an example, and 

later presents the detailed mathematical model.

2.1 Problem description 

DLBP assigns a set of tasks to each station for each product to be disassembled by 

considering cycle time constraints and precedence relationships. In this paper, minimizing the 

number of stations is taken as the performance measure. In the DLBP literature, there are 

various precedence relations such as AND precedence, OR precedence, complex AND/OR 

precedence, and OR successor. This paper mainly centers on the AND/OR precedence 
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relations. Figure 1 illustrates an example precedence diagram with 12 disassembly tasks taken 

from Ren et al. (2017). In this figure, a disassembly task is represented by a node 𝑖 

( ). Furthermore, two dummy tasks, A1 and A2, are utilized to describe the 𝑖 = 1,2,⋯,12

complex AND/OR precedence relations. There is a positive operation time  for operating a 𝑡𝑖

real task; there is no operation time for a dummy task or the operation time of a dummy task 

is set to zero. There are two main constraints in DLBP: cycle time constraint and precedence 

constraint. Cycle time constraint indicates that the total operation time of the disassembly 

tasks on a station is less than or equal to a given cycle time. The precedence constraint in 

DLBP is much more complex than that of ALBP. Specifically, in the AND precedence, the 

predecessors of a task, referred to as AND predecessors, must be completed before operating 

this task, e.g. task 5 can be operated only when both task 3 and task 4 have been completed. 

In the OR precedence, at least one of the predecessors of a task, referred to as OR 

predecessor, must be completed before operating this task. In this figure, the OR predecessors 

are linked with an arc, e.g. task 1 and task 2 are the OR predecessors of task 4. In other words, 

task 4 can be operated when either task 1 or task 2 is completed. Likewise, the OR relations 

can be predecessors as well successors. OR successors relations indicate that at most one of 

the tasks in a specified set can be performed after one task completed. This relation type is 

presented by Altekin et al. (2008). There are also more complex precedence relations as 

presented in this figure, AND within OR and OR within AND, where dummy tasks are 

employed to describe these two complex precedence relations clearly. In this type of priority 

relation, the priority relation is first observed AND then OR. According to Figure 1, before 

performing task 8, task 5 and task6 or task 11 must be done. Hence, task 5-task 6 and task 11 

have connected each other with AND relation, so two group of tasks are connected task 8 

with OR type relations. As can be understood from the above precedence and successors 

relations, there is no only one way, such as ALBPs, for the disassembly of a product. 
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Fig. 1 Precedence diagram of a product

2.2 Mathematical model

On the basis of Altekin and Akkan (2012) and Kalaycılar, Azizoğlu, and Yeralan (2016), the 

mathematical model is formulated as follows. The utilized notations are first introduced as 

follows. 

Indices: 

𝑖, 𝑗 Task/part index, , where  is the number of real and dummy 𝑖,𝑗 ∈ {1,2,⋯,𝑁} 𝑁

tasks/parts. 

𝑚,𝑛 Station index, , where  is the maximum number of stations 𝑚,𝑛 ∈ {1,2,⋯,𝑀} 𝑀

allowed to be opened.

𝐶𝑇 Given cycle time.

𝑡𝑖 Operation time of performing task .𝑖

ANDP(𝑖) Set of AND predecessor of task .𝑖

ORP(𝑖) Set of OR predecessor of task .𝑖

ORPT Set of tasks which have OR predecessors.

Decision variable: 

𝑥𝑖𝑚 1, if task  is allocated to station ; 0, otherwise. 𝑖 𝑚

Auxiliary variable

𝑦𝑚 1, if station  is opened; 0, otherwise.𝑚

In the considered DLBP, cycle time constraint and precedence constraint must be satisfied. 

The detailed mathematical formulation is provided using constraints (1-6). It is worth to note 
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that a dummy task is necessary when utilizing this model to solve the DLBP with the complex 

AND within OR precedence relations. However, it is acceptable to use one dummy task or not 

to solve the DLBP with OR within AND precedence relations. 

Min 𝑓 =
𝑀

∑
𝑚 = 1

𝑦𝑚 (1)

𝑁

∑
𝑖 = 1

𝑡𝑖 ∙ 𝑥𝑖𝑚 ≤ 𝑦𝑚.𝐶𝑇  ∀𝑚 (2)

𝑀

∑
𝑚 = 1

𝑥𝑖𝑚 = 1  ∀𝑖 (3)

𝑥𝑖𝑚 ≤
𝑚

∑
𝑛 = 1

𝑥𝑗𝑛  ∀𝑚, 𝑖, and 𝑗 ∈ ANDP(𝑖) (4)

𝑥𝑖𝑚 ≤ ∑
𝑗 ∈ ORP(𝑖)

𝑚

∑
𝑛 = 1

𝑥𝑗𝑛  ∀𝑚, 𝑖 ∈ ORPT (5)

𝑥𝑖𝑚,𝑦𝑚 ∈ {0, 1}  ∀𝑖, 𝑚 (6)

Specifically, the objective function (1) minimizes the number of opened stations. Constraints 

(2) deal with the cycle time constraint, ensuring that the total operation time on any station is 

less than or equal to the given cycle time. Constraints (3) indicate that one task must be 

allocated to one station. Constraints (4) and constraints (5) tackle the precedence relations, 

where Constraints (4) handle AND precedence relations and constraints (5) handle OR 

precedence relations. Constraints (4) indicate that a task can be allocated only when all its 

AND predecessors have been allocated to the former station or the same station. Constraints 

(5) guarantee that a task can be allocated when at least one of its OR predecessors has been 

allocated to the former station or the same station. Constraints (6) mean that the decision 

variable and the auxiliary variable take 0 or 1. The above mathematical model is a linear 

mixed integer-programming model, which could be capable of solving using CPLEX solver. 

3. Proposed branch, bound and remember algorithm

As one of the exact methods, BBR algorithm (Borba, Ritt, and Miralles, 2018; Li, 2017; Li et 

al., 2017; Li et al., 2018; Morrison et al., 2014; Sewell and Jacobson, 2012; Vilà and Pereira, 
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2014) has produced promising results in ALBPs (Battaïa and Dolgui, 2013). For instance, 

BBR achieves the state-of-the-art results for simple ALBP (Morrison et al., 2014; Sewell and 

Jacobson, 2012) and U-shaped ALBP (Li et al., 2018). The main feature of BBR method is 

that it stores all the searched sub-problems and uses memory to eliminate redundant states. 

Nevertheless, from a recent review paper by Özceylan et al. (2018), and to the authors’ best 

knowledge, there exists no application of exact method in solving DLBPs for OR 

predecessors. Hence, this research put forward the first attempt to solve DLBP with BBR 

methods. The main procedure and the segments are given in the following sub-sections.

3.1 Main procedure of the BBR method

The main procedure of the proposed BBR method is illustrated in Algorithm 1 as follows. 

BBR comprises of three phases: Phase I aims at obtaining a high-quality upper bound (UB), 

Phase II tries to find new UB utilizing cyclic best-first search strategy, and Phase III tries to 

prove the optimality of the solution by Phase II. Specifically, Phase I utilizes a modified 

Hoffman heuristic (MHH) to obtain a high-quality UB. If the UB is equal to the lower bound 

at root ( ), this UB is the optimal number of the stations. If the optimal solution is not LB𝑟𝑜𝑜𝑡

proved, the cyclic best-first search strategy is executed to attempt to update the UB. 

Subsequently, breadth-first search strategy is utilized to try to prove the optimality of the 

solution achieved by Phase II. 

Algorithm 1: Main procedure of BBR method
% Phase I
Step 1: Obtain UB using high-performing heuristic;
Step 2: Achieve the lower bound at the root or ;LB𝑟𝑜𝑜𝑡

Step 3: 

If  thenUB = LB𝑟𝑜𝑜𝑡

Terminate this procedure;
Else execute Step 4;
Endif

% Phase II

Step 4:

If the termination criterion is met or the optimal solution is found then
Terminate this procedure;

Else execute the cyclic best-first search strategy and update UB when necessary; 
Endif

Step 5: 

If or the termination criterion is met thenUB = LB𝑟𝑜𝑜𝑡 
Terminate this procedure;

Else execute Step 6;
Endif
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% Phase III

Step 6:

If the termination criterion is satisfied or optimal solution is found then
Terminate this procedure;

Else execute breadth-first search strategy and update UB when necessary; 
Endif

In the BBR method, all the sub-problems are stored in memory (including the searched 

sub-problems) in Phase II or Phase III. Firstly, a sub-problem is first selected utilizing the 

corresponding search strategy. Subsequently, a number of new sub-problems at deeper depth 

are generated. One sub-problem is abandoned if it cannot achieve smaller upper bound proved 

by lower bounding methods or it is dominated by other sub-problems proved by the 

dominance rules. All the remained sub-problems surviving from the lower bounding methods 

and dominance rules are stored in the memory. Finally, a new sub-problem is again chosen, 

and this procedure is terminated when or the termination criterion is satisfied.UB = LB𝑟𝑜𝑜𝑡 

The main search procedure utilized in Step 4 and Step 5 is illustrated in Algorithm 2. For 

clarity, a sub-problem or a partial solution is donated as , where A is ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚)

the set of assigned tasks to the former m stations, U is the set of unallocated tasks, and  is 𝑆𝑚

the set of tasks allocated to station m. It is clear that  and , where T is 𝐴 = ⋃𝑚
𝑛 = 1𝑆𝑗 U = T\A

the set of all tasks. 

Algorithm 2: Main search procedure
1 While the termination criterion is not met
2 Select a new non-dominated partial solution  with the search 𝑋 (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚)

strategy
3 While the number of generated station loads is less than a given number or search 

tree is not empty 
4 Generate a new partial solution  in deeper depth 𝑌 (𝐴′,𝑈′,𝑆1,𝑆2,⋯,𝑆𝑚,𝑆𝑚 + 1) 

utilizing the branching method
5 If  is a complete solution, update UB when necessary.𝑌
6 Delete  if . 𝑌 max{𝐿𝐵1, 𝐿𝐵2, 𝐿𝐵3} ≥ 𝑈𝐵
7 Delete  if it is dominated by one of the dominance rules. 𝑌
8 Store the sub-problem .𝑌
9 If , sub-problem  is marked with dominated partial solution. BPLB ≥ 𝑈𝐵 𝑌

% BPLB is the bin-packing lower bound
10 Endwhile
11 Endwhile
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3.2 Branching 

Branching method is proposed to partition of the original problem into a set of smaller 

sub-problems. This study employs the station-oriented branching method here due to its 

superiority as demonstrated in published studies (Morrison et al., 2014; Sewell and Jacobson, 

2012). The main feature of station-oriented branching method is that it generates a set of 

complete station loads. Supposed a selected sub-problem is , ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚)

station-oriented branching method generates a set of sub-problems ℘′ =

 at deep depth. Recall that, for one new sub-problem, the precedence (𝐴′,𝑈′,𝑆1,𝑆2,⋯,𝑆𝑚,𝑆𝑚 + 1)

constraint and cycle time constraint must be satisfied, e.g. expressions (4-5) in Section 2.2 

must be satisfied for the assigned tasks and . ∑
𝑖 ∈ 𝑆𝑛

𝑡𝑖 ≤ 𝐶𝑇  ∀𝑛 = 1,2,⋯,𝑚, 𝑚 + 1

3.3 Upper bounds 

This research employs the MHH (Li et al., 2018; Morrison et al., 2014; Sewell and Jacobson, 

2012). Although MHH is developed by ALBP, this algorithm is adapted for DLBP to obtain a 

high-quality UB. MHH starts with generating a number of complete stations loads (set to 

1000) for station 1, and then the one with the maximum value of 

 is selected, and this procedure is terminated until a complete ∑
𝑖 ∈ 𝑆1

(𝑡𝑖 + 𝛼 ∙ 𝑤𝑖 + 𝛽 ∙ |𝐹𝑖| ― 𝛾)

solution is achieved. Here, ( ) is the set of immediate (all) successors of task i,  is the 𝐹𝑖 𝐹 ∗
𝑖 𝑤𝑖

positional weight of tasks ( ), and ,  and  are three input parameters. 𝑤𝑖 = 𝑡𝑖 + ∑
𝑗 ∈ 𝐹 ∗

𝑖
𝑡𝑗 𝛼 𝛽 𝛾

Notice that a task j is the successor of task i when task i the AND predecessor or OR 

predecessor of task j. This expression encourages a full workload with , encourage the tasks 𝑡𝑖

with large positional weight or larger number of successors with  or , and also 𝛼 ∙ 𝑤𝑖  𝛽 ∙ |𝐹𝑖|

encourage the tasks with larger operation times with .―𝛾

Another underlying important problem is determining the values of the three input parameters 

in order to  optimize upper bound. Following the published papers (Li et al., 2018; Morrison 

et al., 2014; Sewell and Jacobson, 2012), this research sets to values of these parameters as 

the: ,  and 𝛼 ∈ {0, 0.005, 0.010, 0.015, 0.020} 𝛽 ∈ {0, 0.005, 0.010, 0.015, 0.020} 𝛾 ∈

. As different combination of the values might lead to different solutions, {0,0.01,0.02,0.03}

this research tests all the possible combinations (100 combinations) of the parameter values, 

and the minimum station number is regarded as the UB by MHH. However, MHH terminates 
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once the station number by a combination is equal to  to avoid wasted computation LB𝑟𝑜𝑜𝑡

time. 

3.4 Lower bounds

Due to the difference in the precedence relations between ALBP and DLBP, the 

precedence-based lower bounds in ALBP are not applicable to DLBP or need big 

modifications. Hence, this research mainly employs the bin-packing based lower bounds 

which are obtained by slacking the DLBP into bin-packing problem. The applied lower 

bounds include well-known LB1, LB2 and LB3, and the bin-packing lower bound (BPLB) by 

solving the bin-packing problem optimally with a separate branch and bound solver (Li et al., 

2018; Morrison et al., 2014; Sewell and Jacobson, 2012). The first three lower bounds are 

calculated using expressions (7-10), where  is the minimum integer number larger than ⌈𝐴⌉

,  is the number of tasks satisfying  under given a set of tasks 𝐴 |{𝑖 ∈ 𝑇|𝑡𝑖 > 𝐶𝑇/2}| 𝑡𝑖 > 𝐶𝑇/2

T = {1, 2,…, N}.

LB1 = ⌈∑
𝑖 ∈ 𝑇𝑡𝑖 𝐶𝑇⌉ (7)

LB2 = |{𝑖 ∈ 𝑇|𝑡𝑖 > 𝐶𝑇/2}| + ⌈|{𝑖 ∈ 𝑇|𝑡𝑖 = 𝐶𝑇/2}|
2 ⌉ (8)

 LB3 = ⌈∑
𝑖 ∈ 𝑇𝑣𝑖⌉ (9)

𝑣𝑖 = { 1  if  𝑡𝑖 > 2 ∙ 𝐶𝑇/3
2 3  if  𝑡𝑖 = 2 ∙ 𝐶𝑇/3

1 2   if  𝐶𝑇/3 <  𝑡𝑖 < 2 ∙ 𝐶𝑇/3
1 3  if  𝑡𝑖 = 𝐶𝑇/3

(10)

Regarding BPLB, a separate branch and bound solver is applied to obtain the optimal 

solutions as the bin-packing problem is already NP-hard. To avoid tremendous time utilized 

to calculate the BPLB, this branch and bound solver terminates when computation time 

reaches one second or the total number of loads generated for one bin exceeds 50 (Sewell and 

Jacobson, 2012). As LB1, LB2 and LB3 are much faster than BPLB, LB1, LB2 and LB3 are 

first applied and BPLB is later applied to the sub-problems that are not pruned by LB1, LB2 

and LB3.  
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3.5 Dominance rules

This research extends or modifies the four dominance rules in solving ALBP (Li et al., 2018; 

Morrison et al., 2014; Sewell and Jacobson, 2012) to solve DLBP, including maximum load 

rule, modified Jackson dominance rules, no-successor rule and memory-based dominance 

rule. These dominance rules are clarified as follows. 

Maximum load rule: A sub-problem is pruned when a task i can be ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚) 

assigned to station m while satisfying cycle time constraint and precedence constraint. 

Due to OR precedence relation, the modified Jackson dominance (Li et al., 2018; Morrison et 

al., 2014; Sewell and Jacobson, 2012) cannot be applied to DLBP. Hence, this research 

develops two modified Jackson dominance rules for two situations. If task i, task j and all the 

successors of these two tasks are not the OR predecessor of other tasks, the original modified 

Jackson dominance 1 is applied.

Modified Jackson dominance rule 1: A sub-problem is pruned when ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚) 

1) task i, task j and all the successors of these two tasks are not the OR predecessor of other 

tasks; 2) there is a task i in  and an unallocated task j such that  and ; 3) 𝑆𝑚 𝑡𝑖 ≤ 𝑡𝑗 𝐹 ∗
𝑖 ⊆ 𝐹 ∗

ℎ

task j can replace task i without violation of cycle time constraint and precedence constraint.

Nevertheless, if task i, task j or one of the successors of these two tasks is the OR predecessor 

of other tasks, the modified Jackson dominance 2 is applied.

Modified Jackson dominance rule 2: A sub-problem is pruned when ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚) 

1) task i, task j or one of the successors of these two tasks is the OR predecessor of other 

tasks; 2) there is a task i in  and an unallocated task j such that  and they have the 𝑆𝑚 𝑡𝑖 ≤ 𝑡𝑗

same successor relation; 3) task j can replace task i without violation of cycle time constraint 

and precedence constraint.  

No-successor rule: A sub-problem is pruned when 1) the tasks in  ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚)  𝑆𝑚

have no successors; 2) there is one unassigned task which is assignable has at least one 

successor. 

Memory-based dominance rule: A sub-problem is pruned if there is a ℘ = (𝐴,𝑈,𝑆1,𝑆2,⋯,𝑆𝑚) 

subproblem  in memory such that  and . ℘ = (𝐴′,𝑈′,𝑆1,𝑆2,⋯,𝑆𝑛) 𝐴 =  𝐴′ 𝑚 ≥ 𝑛

As different lower bounding methods and dominance rules need different running time, the 

sequence of applying them is a vital problem. In this paper, the sequence of applying these 
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dominance rules are presented as follows: for a new sub-problem, LB1, LB2 and LB3 is first 

applied, later maximum load rule, modified Jackson dominance rules and no-successor rule, 

subsequently memory-based dominance rule is applied. If this new sub-problem is still not 

dominated, the BPLB is finally applied due to large computation time. 

3.6 Search strategy

This section describes the utilized cyclic best-first search strategy (CBFS) in Phase II and 

breadth-first search strategy(BrFS) in Phase III. The main procedure of CBFS is presented in 

Algorithm 3. Firstly, CBFS select the most promising problem at depth 1 and generate a 

number of children sub-problems for depth 2; the non-dominated children are stored in 

memory, and later it selects the most promising problem at depth 2 and generates a number of 

children sub-problems for depth 3. This above procedure terminates when reaching the 

deepest level, and then it comes back to depth 1 and this cycle is repeated until the 

termination criterion is met. To select the most promising sub-problems, this research utilizes 

the selection criterion as , where  is the best lower bound 𝑏(℘) = LB(U) + 𝐼 𝑚 ―𝜆|𝑈| LB(U)

by the lower bounding methods for the unassigned task set ,  is the total idle on the U 𝐼

former opened m stations,  is the number of unassigned tasks, and  is an input number |𝑈| 𝜆

set to 0.02. Clearly, the sub-problem with a smaller lower bound, smaller total idle time and 

larger number of remained tasks (easier to pack) is regarded as the most promising 

sub-problem.

Algorithm 3: Procedure of CBFS
Step 1: Set l=1 and generate a number of sub-problems at depth 1;
Step 2: Select the subproblem  at depth l with the minimum value of  ℘

;𝑏(℘)
%  is the fitness of a sub-problem .𝑏(℘) ℘
Step 3: Generate a number of children sub-problems at depth l+1 and 
store the non-dominated children;
Step 4: Update l with l = (l+1) % (UB-1) and go to Step 2 when there 
are still unexplored sub-problems; otherwise, terminate the CBFS 
procedure.

To avoid many sub-problems at former depths and obtain high-quality complete solution fast, 

this research makes a small modification on the CBFS, referred to as MCBFS, following Li et 

al. (2018). Namely, if the number of subproblems at depth l+1 is larger than 10,000, the 
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sub-problem at depth l is not selected and l is updated directly utilizing l= (l+1) % (UB-1). 

The basic logic behind this modification is that, if there are enough promising subproblems at 

depth l+1, there is no need to generate more sub-problems for depth l+1. 

Regarding the BrFS, it generates all the sub-problems at depth 1, and later generates all the 

sub-problems at depth 2, and this procedure is repeated for deeper depths until the optimal 

solution is achieved. Clearly, BrFS is heavy and might cost a lot of running time to test all the 

sub-problems at one depth. However, BrFS might be utilized to prove the optimality of the 

solutions for some instances by Phase II when utilizing the tighter UB achieved by Phase II 

(Sewell and Jacobson, 2012). 

4. Computational study

This section tests the performance of the proposed BBR method on two sets of instances: 

instances with only AND precedence relation and instances with AND precedence and OR 

precedence relation. Table 2 presents the tested instances, where the former three instances 

only have AND precedence relations and latter 11 instances by adding ‘-OR’ have both AND 

precedence and OR precedence relations. For each instance, the original cycle time and 

several cycle times within  and  are randomly generated (a total number of 𝑡𝑀𝑎𝑥 ⌈∑
𝑖 ∈ 𝑇𝑡𝑖 2⌉ 

20 cycle times) are tested, where  is the maximum value of the operation times. Notice  𝑡𝑀𝑎𝑥

that the very small-size instances are not tested as BBR is capable of obtaining the optimal 

solutions very fast. For P22-OR, P34-OR, P47-OR, P60-OR and P73-OR, the original 

operation times of several tasks are set to 0 in Kalaycılar et al. (2016), and hence this research 

re-generates the operation times from a discrete uniform distribution [1,20] following the 

method in this paper. In addition, this research also generates two large-size instances: 

P120-OR and P133-OR. P120-OR is generated by combing the precedence relations of 

P47-OR and P73-OR; P133-OR is generated by combing the precedence relations of P60-OR 

and P73-OR. As table 2 contains 13 instances and one instance has 20 cycle times for one 

instance, there are a total number of 260 cases tested here.

Table 2 Summary of the tested instances
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Instances Description
P25 A Samsung SCH-3500 cell phone with 25 subassemblies by Kalayci and Gupta 

(2013a).
P40 HG5-20 triaxial five speed mechanical transmission with 40 tasks (12 

components and 28 fasteners) by Ren et al. (2018c).
P47 A laptop with 47 parts with three set of operation times by Kalayci et al. (2015), 

referred to as P47A, P47B and P47C.
P10-OR The instance with 10 tasks by McGovern and Gupta (2003).
P22-OR The instance modified from ball-point pen with 22 tasks by Kalaycılar et al. 

(2016). 
P34-OR The instance modified from radio with 34 tasks by Kalaycılar et al. (2016). 
P47-OR The instance with 47 tasks by Kalaycılar et al. (2016).
P60-OR The instance with 60 tasks by Kalaycılar et al. (2016).
P73-OR The instance with 73 tasks by Kalaycılar et al. (2016).
P120-O
R

Generated by combing the precedence relations of P47-OR and P73-OR.

P133-O
R

Generated by combing the precedence relations of P60-OR and P73-OR.

Before solving these instances, the precedence diagram is adjusted so that the task number of 

the predecessor is less than the task numbers of the successors. Also, dummy tasks are 

necessary and utilized to transfer the precedence diagram with the complex AND within OR 

precedence relations, e, g. the dummy task A1 in Fig.1. The BBR is coded utilizing the C++ 

programing language in Microsoft Visual Studio 2015, and it is compared with the model in 

Section 2.2 utilizing the CPLEX solver in the General Algebraic Modeling System 23.0. All 

the experiments are conducted on a personal computer equipped with Intel i7-4790S 3.20 

GHz CPU with 8 GB RAM. 

4.1 Case studies  

This section solves three instances with different precedence relations utilizing the proposed 

BBR method. Figure 2 illustrates the precedence diagram of Samsung SCH-3500 cell phone 

(P25) with 25 disassembly tasks, where there are only AND precedence relations. Figure 3 

presents the precedence diagram of a ball-point pen with 22 tasks (P22-OR) in Kalaycılar et 

al. (2016), where there are both AND precedence and OR precedence relations. Figure 4 

illustrates the precedence diagram of the instance with 47 tasks (P47-OR) by Kalaycılar et al. 

(2016), where there are AND precedence, OR precedence and complex OR within AND 

precedence relations. For instance, there is OR within AND precedence relation before task 
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10 (see Figure 4).  
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Fig. 2 Precedence diagram of P25 with 25 tasks
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Fig. 3 Precedence diagram of P22-OR with 22 tasks
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Fig. 4 Precedence diagram of P47-OR with 47 tasks

Table 3 illustrates the optimal solutions (verified by CPLEX solver) for P25 with a cycle time 
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of 18, P22-OR with a cycle time of 39 and optimal solution for P47-OR with a cycle time of 

66 by the proposed BBR method. In this table, the second column presents the assigned tasks, 

and the third and fourth columns show the corresponding operation times and the total 

operation time of tasks in the second column. After checking the detailed task assignment, it 

is observed that both the cycle time constraint and precedence constraint are satisfied. It can 

be concluded that the proposed BBR is capable of solving the DLBPs with OR precedence 

relations and complex OR within AND precedence relation optimally.

Table 3 Detailed task assignments for the optimal solutions 
P25 with a cycle time of 18

　 Assigned tasks Operation times Total time Optimal station number
Station 1 2,6 2,15 17 9
Station 2 1,7 3,15 18
Station 3 3,8 3,15 18
Station 4 9,13 15,2 17
Station 5 4,14,15,16,17 10,2,2,2,2 18
Station 6 5,18,20 10,3,5 18
Station 7 19 18 18
Station 8 10,11,12,21,22,25 2,2,2,1,5,2 14
Station 9 23,24 15,2 17 　

P22-OR with a cycle time of 39
　 Assigned tasks Operation times Total time Optimal station number

Station 1 1,3,4 10,12,17 39 7
Station 2 2,22,11,7,15 6,19,1,9,4 39
Station 3 5,6,10 9,19,11 39
Station 4 8,9,13,14 15,6,12,6 39
Station 5 12,18,21 19,6,14 39
Station 6 16,17,20 17,10,7 34
Station 7 19 16 16

P47-OR with a cycle time of 66
　 Assigned tasks Operation times Total time Optimal station number

Station 1 1,2,3,4,11,12,31,13 5,11,18,4,7,1,4,16 66 8
Station 2 5,14,15,32,35,19 12,6,6,20,7,15 66
Station 3 6,16,20,21,22,25,36,26 7,7,3,16,11,5,16,1 66
Station 4 17,27,28,37,39 18,10,17,4,17 66
Station 5 29,30,33,38,45,24 11,4,20,18,7,6 66
Station 6 10,23,40,42,44 15,8,9,15,19 66
Station 7 7,34,41,43,46,47,18 8,19,9,15,5,2,8 66
Station 8 8,9 18,1 19 　
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4.2 Comparative study 

This section evaluates the performance of BBR method by comparing with CPLEX solver 

and five recent and effective metaheuristics on a total number of 260 cases. These 

metaheuristics include: genetic algorithm (GA), partial swarm optimization(PSO), simulated 

annealing algorithm(SA), tabu search algorithm (TS) and artificial bee colony algorithm 

(ABC). Additionally, the tested methods are evaluated under six CPU time limits (0.5 second, 

1 second, 2 seconds (s), 10s, 100s and 3600s) to have a better observation of the performance 

of the BBR method under different termination criterion. The detailed procedures of the 

reimplemented metaheuristics are available upon request. Here, the CPLEX solver terminates 

when the optimal solution is achieved, or the computation time reaches the given time limit. 

The metaheuristics terminates when the obtained UB is equal to  at the max{𝐿𝐵1, 𝐿𝐵2, 𝐿𝐵3}

root or the computation time reaches the given time limit the as metaheuristics cannot prove 

the optimality of the achieved solution. This research divides the tested instances in two sets: 

small-size instances with task number less than or equal to 73 and large-size instances 

including P120-OR and P133-OR. 

Table 4 presents the overall results by the tested methods, #OPT is the number of optimal 

solutions found, ARPD is the average value of relative percentage deviation (RPD). The RPD 

is calculated with , where  is the number of stations 100 ∙ (𝑓𝑠𝑜𝑚𝑒 ― 𝑓𝐵𝑒𝑠𝑡) 𝑓𝐵𝑒𝑠𝑡 𝑓𝑠𝑜𝑚𝑒

achieved by one method and  is the minimum number of stations yielded by all the 𝑓𝐵𝑒𝑠𝑡

tested methods. As metaheuristic might produce different solutions in different runs, in this 

study metaheuristic solve each instance for 20 times, and this table reports the average value 

in 20 times’ independent runs. The detailed results are not exhibited for space limits and they 

are available upon request.

From this table, it is observed that BBR is the best performer under six CPU time limits. 

Specifically, BBR is capable of achieving all the optimal solution within 1s whereas the five 

algorithms and CPLEX can only achieve part of the optimal solutions within 100s. And it is 

also observed that reimplemented metaheuristics outperform the CPLEX in both solution 

quality and search speed, especially for large-size instances. Regarding the computation times, 

BBR only consumes 0.036s on average to find all the optimal solutions and verify the 
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optimality of the achieved solutions. The metaheuristics, on the contrary, cannot verify the 

optimality of the achieved solutions and cannot find all the optimal solutions even with 

increased computation time. In summary, this comparative study demonstrates the superiority 

of the proposed BBR method over the implemented metaheuristic and CPLEX in both 

solution quality and search speed.

Table 4 The overall results by the tested methods

Small-size instances Large-size instances All instancesTime 
limit 
(s)

Method
#OPT ARPD Time(s) #OPT ARPD Time(s) #OPT ARPD Time(s)

CPLEX 156 - 0.441 0 - 0.500 156 - 0.450 
GA 215.05 0.18 0.025 32.2 0.93 0.102 247.25 0.30 0.037 
PSO 214.75 0.23 0.029 33.4 0.49 0.116 248.15 0.27 0.042 
SA 215.4 0.15 0.025 32.05 1.14 0.108 247.45 0.30 0.037 
TS 215.45 0.15 0.024 32.1 0.92 0.105 247.55 0.27 0.037 

ABC 215.15 0.16 0.025 32.15 1.16 0.102 247.3 0.32 0.037 

0.5

BBR 215 0.27 0.035 39 0.04 0.026 254 0.23 0.034 
CPLEX 170 - 0.687 0 - 1.000 170 - 0.735 

GA 215.35 0.16 0.048 32.1 0.91 0.202 247.45 0.27 0.072 
PSO 214.7 0.24 0.053 33.3 0.75 0.203 248 0.32 0.076 
SA 216.1 0.12 0.045 32 0.86 0.208 248.1 0.24 0.070 
TS 216 0.13 0.046 32.05 1.21 0.206 248.05 0.30 0.070 

ABC 215.7 0.14 0.046 32.05 1.03 0.205 247.75 0.28 0.070 

1

BBR 220 0.00 0.038 40 0.00 0.026 260 0.00 0.036 
CPLEX 180 - 1.066 0 - 2.000 180 - 1.210 

GA 215.85 0.14 0.090 32.1 0.98 0.402 247.95 0.27 0.138 
PSO 214.7 0.25 0.103 33.45 0.92 0.363 248.15 0.36 0.143 
SA 216.2 0.12 0.086 32.15 1.10 0.404 248.35 0.27 0.135 
TS 216.25 0.12 0.087 32.1 0.55 0.402 248.35 0.19 0.136 

ABC 215.85 0.13 0.089 32.05 1.20 0.403 247.9 0.30 0.137 

2

BBR 220 0.00 0.038 40 0.00 0.026 260 0.00 0.036 
CPLEX 200 - 2.296 0 - 10.000 200 - 3.482 

GA 216.65 0.10 0.403 32.5 0.65 1.910 249.15 0.19 0.635 
PSO 214.6 0.24 0.487 33.55 0.71 1.658 248.15 0.31 0.667 
SA 217.6 0.07 0.376 32.25 0.89 1.981 249.85 0.20 0.623 
TS 217.4 0.08 0.382 32.4 0.99 1.955 249.8 0.22 0.624 

ABC 216.75 0.10 0.396 32.4 1.11 1.947 249.15 0.25 0.634 

10

BBR 220 0.00 0.038 40 0.00 0.026 260 0.00 0.036 
CPLEX 216 0.32 7.301 0 - 100.000 216 - 21.562 

GA 218.9 0.03 3.380 33.7 0.42 17.540 252.6 0.09 5.558 100
PSO 214.9 0.22 4.710 33.85 0.78 15.442 248.75 0.31 6.361 
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SA 219.7 0.01 3.153 33.65 0.63 17.175 253.35 0.11 5.310 
TS 219.4 0.02 3.174 33.5 0.51 17.457 252.9 0.09 5.371 

ABC 218.55 0.04 3.373 33.8 0.69 17.276 252.35 0.14 5.512 
BBR 220 0.00 0.038 40 0.00 0.026 260 0.00 0.036 

CPLEX 218 0.05 91.392 3 - 3508.526 221 - 617.105 
GA 220 0.00 99.181 35.3 0.50 485.073 255.3 0.08 158.549 
PSO 216.1 0.16 155.584 34.5 0.86 522.340 250.6 0.27 212.008 
SA 220 0.00 98.659 35.7 0.30 429.442 255.7 0.05 149.549 
TS 220 0.00 98.926 35.75 0.26 430.037 255.75 0.04 149.866 

ABC 220 0.00 98.992 35.85 0.30 423.760 255.85 0.05 148.956 

3600

BBR 220 0.00 0.038 40 0.00 0.026 260 0.00 0.036 

*Best in bold

Let us focus on the exact methods, CPLEX and BBR, and table 5 presents the summary of the 

results by CPLEX solver and BBR method for both small-size and large-size instances under 

3600’s time limit. In this table, #OPT found is the number of optimal solutions found, #OPT 

verified is the number of optimal solutions verified, and Max-time and Average-time are the 

maximum value and the average value of the running times when solving the tested cases. 

Regarding the small-size instances, it is observed that BBR is capable of obtaining and 

verifying all the 220 optimal solutions within an average running time of 0.038s. For the most 

difficult case, BBR only consumes 1.591s. The CPLEX solver, on the contrary, needs much 

more running time and the average running time by CPLEX solver is 91.392 s. And CPLEX 

finds 218 optimal solutions among which 215 optimal solutions are verified. This study also 

conducts the Wilcoxon matched-pairs signed rank test on the consumed running times, and 

statistical results demonstrate that the proposed BBR is statistically fast than CPLEX solver 

with a p value less than 0.0001. Regarding the large-size instances, it is observed that BBR 

also achieves the clear superiority over the CPLEX. CPLEX only find three optimal solutions 

and cannot find optimal solutions for the majority of the large-size instances. The BBR, on 

the contrary, obtain all the optimal solutions and verify the optimality of all these solutions. In 

particular, the CPLEX only consumes little computation time and the maximum running time 

is only 0.948s. 

In summary, BBR is capable of solving all the 260 small-size and large-size instances 

optimally in very short computation time. The CPLEX fails to solve the large-size instances 
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optimally within the given termination criterion and costs much more computation time. All 

the computational results verify that the proposed BBR outperforms CPLEX solver in 

solution quality and search speed, and BBR is very fast in solving all the tested instances 

optimally. 

Table 5 Summary of the results by CPLEX solver and BBR method
Instances Method #OPT found #OPT verified Max-time Average-time

CPLEX 218 215 3600 91.392Small-size 
instances BBR 220 220 1.591 0.0380

CPLEX 3 3 3600 3508.526Large-size 
instances BBR 40 40 0.948 0.0263

CPLEX 221 218 3600 617.105All 
instances BBR 260 260 1.591 0.0362

5. Conclusions, managerial insights and future researches

This research develops the BBR algorithm an exact methodology to tackle the DLBP with 

AND/OR precedence to minimize the number of opened stations. The proposed BBR method 

employs modified Hoffman heuristic to obtain a high-quality upper bound and four 

bin-packing based lower bound methods to prune the new sub-problems. Furthermore, it 

utilizes the memory-based dominance rule to eliminate the reduplicated sub-problems by 

storing all the searched sub-problems and proposes the modified cyclic best-first search 

strategy with proper station load selection criterion to obtain high-quality complete solutions 

fast. The proposed BBR method is compared with the mathematical model using CPLEX 

solver on a set of 260 instances taken from the literature. 

Computational results show that BBR obtains optimal solutions for all the tested instances 

within 0.1 second on average, and the maximum running time during solving these instances 

is only 1.591 seconds. Moreover, comparative study verifies that the BBR outperforms the 

CPLEX solver and well-known metaheuristics in both solution quality and search speed 

aspects. As well as computational advantages, the optimal solutions obtained by the BBR 

algorithm have provided certain insights for managers; (i) it can offer optimal line efficiency 

to manufacturing engineers in terms of the number of stations for current cycle time; (ii) it 

can prevent to use unnecessary resources such as, workers, machine and tools; (iii) it can help 

to reduce overall cost on the products. 
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Future revenue stems from developing more dominance rules or lower bounding methods to 

extending the branch, bound and remember algorithm to tackle the DLBPs with the Successor 

OR type precedence relations. As there are limited instances, it is quite important to obtain 

more large-size instances from real industry. It is also suggested to extend the proposed 

methodology to DLBP with different layouts (U-shaped or two-sided), and the DLBP under 

uncertainty, e.g. stochastic DLBP. 
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